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1 Introduction

Electrocardiographic measurements from the body surface are often undesirably
influenced by the presence of respiration-induced movements of the heart. Mea-
sures which quantify beat-to-beat variations in QRS morphology are particularly
susceptible to this influence and special attention must therefore be given to this
problem. The analysis of a vectorcardiographic (VCG) lead configuration has been
found to reduce this problem. An important reason is that changes in the orien-
tation of the electrical axis, caused by e.g. respiration, can to a certain degree
be compensated for by VCG loop rotation. Such rotation can also improve the
performance of serial VCG/ECG analysis in which two loops, recorded at different
occasions, are compared in order to find pathological changes associated with e.g.
myocardial infarction [1], [2].

In this chapter, a statistical signal model is described which compensates for
heart movements by means of scaling and rotation in relation to a “reference”
VCG loop [3]. Temporal loop misalignment is also parameterized within the model
framework. The maximum likelihood (ML) estimator of the parameters describ-
ing these transformations is found to possess a nonlinear structure and involves
e.g. singular value decomposition. The optimal parameter estimates can be de-
termined without the need for iterative optimization techniques. Although the
model initially assumes that two loops are to be aligned, the method can easily be
extended to the case of multiple loop alignment.

The performance of the ML estimation method is assessed in the presence of
noise and for different VCG loop morphologies. The results show that loop align-
ment can be done accurately at low to moderate noise levels. At high noise levels
the estimation of rotation parameters breaks down in an abrupt manner. Further-
more, it is shown that the performance is strongly dependent on loop morphology;
a planar loop is more difficult to align than is a nonplanar loop. The issue of
measuring morphologic variability in combination with loop alignment has been
investigated in [4]. Using an ECG simulation model based on propagation of ac-
tion potentials in cardiac tissue, the ability of the method to separate morphologic
variability of physiological origin from respiratory activity was studied. The re-
sults showed that the separation of these two activities can be done accurately up
to moderate noise levels.

One application of the ML loop alignment is that of QRST complex cancella-
tion for the analysis of atrial fibrillation in the surface ECG [5]. Again, shifts in
the electrical axis of the heart cause the use of methods based on average beat sub-
traction to sometimes produce large QRST-related residuals. Using the loop align-
ment technique, residuals with a substantially lower amplitude were obtained and
thereby the resulting residual ECG is much better suited for e.g. time/frequency
analysis of atrial fibrillation. The new method for QRST complex cancellation is
here briefly reviewed and an example illustrates the improved performance when
compared to that of the average beat subtraction method.
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2 Maximum likelihood VCG loop alignment

This section presents the essentials of the method for spatiotemporal alignment of
VCG loops [3]. A statistical model is introduced in which a VCG loop is related to
a reference loop by certain geometric transformations (Sec. 2.1). Maximum like-
lihood (ML) estimation is then investigated for finding those parameter values of
the transformations which provide the optimal fit between the two loops (Sec. 2.2).

2.1 Model for respiratory-induced heart movements

The signal model is based on the assumption that an observed VCG loop of the
QRS complex, Y, derives from a reference loop, YR, but has been altered through
a series of transformations. The matrix Y = [ y1 y2 y3 ] contains column
vectors yl with N samples for the l:th VCG lead. The reference loop YR is
(N + 2∆)-by-3 and includes 2∆ additional samples in order to allow for observa-
tions which constitute different consecutive subsets of N samples from YR. The
following transformations are considered:

Amplitude scaling Loop expansion or contraction is modeled by the positive-
valued, scalar parameter α and represents, in a simplistic way, the effect of varia-
tions in e.g. location of the heart or conductivity of the surrounding tissue. When
considering the problem of QRST cancellation, see Sec. 5, the extension of α to a
diagonal matrix which accounts for scaling in individual leads is found to improve
the cancellation performance further.

Rotation Rotational changes of the heart in relation to the electrode locations
are accounted for by the orthonormal, 3-by-3 matrix Q; orthonormality implies
that QTQ = I where I is the identity matrix. Rotational changes are caused by,
e.g., respiration or body position changes.

Time synchronization Although Y is assumed to be reasonably well-synchro-
nized in time to YR due to the preceding QRS detection, means for refining the
time synchronization is introduced in the model by the shift matrix Jτ . Due to the
larger size of YR, the observed loop Y can result from any of the (2∆+1) possible
positions in YR. The shift matrix Jτ is defined by the integer time shift τ ,

Jτ =
[

0∆+τ I 0∆−τ
]

(1)

where τ = −∆, ...,∆. The dimensions of the left and right zero matrices in (1) are
equal to N -by-(∆ + τ) and N -by-(∆ − τ), respectively. One of the zero matrices
vanishes when τ is ±∆. The identity matrix I is N -by-N . By estimating the
parameters which characterize these transformations, it will be possible to reduce
the influence of extracardiac activities and thus to improve the alignment of Y
to YR.
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The above scaling, rotation and time synchronization parameters are embraced
by the following observation model

Y = αJτYRQ + W (2)

The transformed reference loop is assumed to be additively disturbed by white,
Gaussian noise (represented by the N -by-3 matrix W = [ w1 w2 w3 ]). Fur-
thermore, the noise is assumed to be uncorrelated from lead-to-lead and with
identical variance, σ2

w, in all leads. The noise probability density function is then
given by

pw(W) =
3∏
l=1

pw(wl) =
1

(2π)3N/2σ3N
w

e
− 1

2σ2
w

∑3

l=1
wlw

T
l (3)

=
1

(2π)3N/2σ3N
w

e
− 1

2σ2
w

tr(WWT )
(4)

where tr denotes the matrix trace.

2.2 Maximum likelihood estimation

The joint maximum likelihood (ML) estimator of the parameters α, Q and τ is
derived by maximizing the log-likelihood function [6], i.e.

∂

∂α

∂

∂Q
∂

∂τ
ln pw(Y|α,Q, τ) = 0 (5)

It can be shown that the calculation of (5) is equivalent to the minimization of the
Frobenius norm ε2 between Y and YR [3],

ε2
min = min

α,Q,τ
‖Y − αJτYRQ‖2F (6)

The Frobenius norm for an m-by-n matrix X is defined by

‖X‖2F = tr(XXT ) =
m∑
i=1

n∑
j=1

|xij |2 (7)

The minimization in (6) is performed by first finding closed-form expressions
for the estimates α and Q under the assumption that τ is fixed. The optimal
estimates of α, Q and τ are then determined by evaluating the error ε2 for all
values of τ in the interval [−∆,∆].

The estimate of Q is obtained by first rewriting the error in (6) such that

ε2 = tr(YYT ) + α2 tr(JτYRYT
RJTτ )− 2α tr(YT

RJTτ YQT ) (8)

and then noting that (8) is minimized by choosing Q such that the last term
tr(JTτ YT

RQTY) is maximized. The key step in finding the optimal Q is to use
the singular value decomposition (SVD) [7]. In general, the SVD provides a
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decomposition of the M -by-N matrix Z into the orthonormal matrices U (M -
by-M) and V (N -by-N) and the diagonal matrix Σ with the singular values
(Σ = diag(σ1, . . . , σl, 0, . . . , 0), l = min(M,N)),

Z = UΣVT (9)

In particular, by defining the 3-by-3 matrix Z such that

Zτ = YT
RJTτ Y (10)

the last term on the right hand side of (8) can be rearranged and expressed as

tr(YT
RJTτ YQT ) = tr(ZτQT ) (11)

By choosing Q such that UVTQT = I, the expression in (11) is maximized and
the resulting ML estimate is given by

Q̂τ = UVT (12)

The index τ has been attached in (12) since this estimate is optimal for only one
particular value of τ .

The estimate of α can be calculated when Q̂τ is available,

α̂τ =
tr(YT

RJTτ YQ̂T
τ )

tr(JτYRYT
RJTτ )

(13)

The discrete-valued time synchronization parameter τ is estimated by means of a
grid search for the allowed set of values,

τ̂ = arg min
τ
‖Y − α̂τJτYRQ̂τ‖2F (14)

Finally, the estimate τ̂ determines which of the estimates in the set of estimates α̂τ
and Q̂τ that should be selected. It is noted that the above estimation procedure
always yields the optimal estimates since τ belongs to a finite set of values; the
continuous-valued estimates α̂ and Q̂ are obtained conditioned on τ . Furthermore,
it should be noted that the resulting ML estimator, as defined by (12), (13) and
(14), exhibit a nonlinear structure although the observation model in (2) has a
linear characteristic.

Application of the above ML estimation procedure requires that a reference
loop YR has been first defined. In the simplest case of aligning two loops, YR can
be taken as any of the two available loops. When several loops {Yi}Mi=1 are to be
aligned, implying that the observation model is extended to Yi = αiJτ,iYRQi +
Wi for i = 1, ...,M , a variety of definitions of YR are possible.

The samples of the matrices Y and YR are assumed to be appropriately cen-
tered around the QRS complex. The 2∆ samples are equally divided into samples
being prepended and appended to the QRS centered interval, respectively. It
should be noted that the noise variance σ2

w does not enter the ML estimation
procedure and thus no estimate is required of this parameter.
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Before demonstrating the effect of loop alignment, it should be pointed out
that Q̂ can be used for retrieving information related to respiration. Such respi-
ratory-related patterns are made more obvious by decomposing Q̂ into a product
of three planar rotation matrices, where the angles ϕX , ϕY and ϕZ define the
rotation around each lead axis. These angles can be estimated by [3],

ϕ̂Y = arcsin(q̂13)

ϕ̂X = arcsin(
q̂12

cos ϕ̂Y
) (15)

ϕ̂Z = arcsin(
q̂23

cos ϕ̂Y
)

where the estimate q̂kl denotes the (k, l):th element of Q̂. The idea of studying
angular changes in axis orientation as a basis for estimating the respiratory rate
was suggested in the mid 80’s, see e.g. [8], [9]; in those studies, however, the angles
were estimated with techniques different from that presented here.

3 Loop alignment and morphologic variability

The above ML loop alignment method can, as pointed out in Sec. 1, compensate
for certain limitations associated with the analysis of subtle beat-to-beat variations
in QRS morphology. This type of analysis has recently received clinical attention
due to its potential value for diagnosing myocardial ischemia and acute infarction,
see e.g. [10], [11], [12]. It has been hypothesized that subtle morphologic variations
may reflect e.g. islets of ischemic tissue or variations in myocardial contraction pat-
terns. Straightforward computation of the standard deviation for a time-aligned
ensemble of beats has been suggested as a means for describing such morphologic
beat-to-beat variability [13]. Unfortunately, few techniques have been presented
in the literature which aim at reducing the undesirable influence of respiration.
This is somewhat surprising since it is well-known that the electrical axis can vary
as much as 10◦ in the transversal plane during inspiration [14].

The examples presented below illustrate the effect of ML loop alignment in
terms of morphologic beat-to-beat variability. In each example, fifty consecutive
sinus beats were selected from a high-resolution ECG recording using an ortho-
gonal lead configuration (X, Y and Z). The sampling rate was equal to 1000 Hz
and the amplitude resolution was 0.6 µV . The recordings were selected from
a database of subjects with previous myocardial infarction and/or episodes of
sustained ventricular tachycardia. Noisy and aberrant beats were excluded from
further analysis. The reference beat was simply selected as the first one out of the
fifty beats. Finally, the ensemble standard deviation was employed as a measure of
morphologic variability and was computed both before and after loop alignment.

The effect of loop alignment is demonstrated by the example in Fig. 1 (a)–(c);
the corresponding parameter estimates of α, ϕX , ϕY , ϕZ , ε and εmin are shown in
Fig. 1 (d)–(f) as functions of time. It is obvious from Fig. 1 (e)–(f) that reduction
in variability is related to scaling as well as to rotation of the loops. For ease
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of interpretation, the results in Fig. 1 (a)–(c) are presented for individual leads
although the alignment is an inherently spatiotemporal process.

Oscillatory patterns found in the error norm are likely to be related to respi-
ratory activity. Such oscillations can be discerned in Fig. 1 (d) both before and
after loop alignment although the oscillations are less pronounced after alignment.
However, in certain cases the model parameters are able to account very well for
the oscillatory component in εmin, see Fig. 2 (d). It is noted that the variability
in lead X is essentially removed after loop alignment while the reduction in the
other two leads is less dramatic (cf. the variation in the angle ϕX).

4 Sensitivity of loop alignment to noise

Loop alignment may be of interest to use in noisy situations for the purpose of
e.g. QRST complex cancellation (see Sec. 5) or for the analysis of data acquired
during exercise. In this section, the noise properties of the rotation matrix estimate
are studied in terms of accuracy of estimated rotation angles. Based on these
results, the concept of a breakdown noise level is introduced to describe an essential
characteristic of the angle estimates. This concept is then used to investigate the
effect of different loop morphologies in the alignment process [4].

4.1 Parameter estimation

A “signal–plus–noise” simulation model similar to that in (2) is here adopted in
order to get an appreciation of how noise influences alignment performance. A
VCG loop was selected from a healthy individual as the signal part of the model
after reduction of the inherent noise level by conventional signal averaging (the loop
was included in the database considered in Sec. 4.2). The loop is then subjected to
rotation on a sample-to-sample basis in order to account for respiratory-induced
noise, i.e. the matrix Q is a function of time k. The resulting simulation model is
defined by  z1(k)

z2(k)
z3(k)

 = Q(k)

 y1(k)
y2(k)
y3(k)

+

 v1(k)
v2(k)
v3(k)

 (16)

where (y1(k), y2(k), y3(k)) constitute the original VCG loop at sample k. The
additive noise vi(k) is assumed to be white Gaussian with variance equal to σ2

v

and with no interlead correlation.
The matrix Q(k) in (16) is assigned a specific structure by the angles which

characterize the three planar rotation matrices of Q(k). It is assumed that the
angular variation in each lead is proportional to the amount of air in the lungs
during a respiratory cycle. A simplistic way to model this property is to use
the product of two sigmoidal functions to describe the inspiratory and expiratory
phases, respectively. The angular variation in lead X is defined by

ϕX(k) = ηX

(
1

1 + eλin(k−κin)

)(
1

1 + eλex(k−κex)

)
(17)
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Figure 1: An example of fifty superimposed beats (a) before loop alignment, (b)
after alignment, and (c) the corresponding ensemble standard deviation (dotted
and solid line correspond to (a) and (b), respectively), (d) spatial variability be-
fore (dotted line) and after loop alignment (εmin in (6); solid line), (e) the scal-
ing estimate α̂ and (f) the angle estimates ϕ̂X , ϕ̂Y and ϕ̂Z (solid, dotted and
dashed/dotted line, respectively).
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Figure 2: An example with large morphologic variability in which the ML loop
alignment dramatically reduces the oscillatory component in ε. Again, fifty super-
imposed beats are shown (a) before loop alignment, (b) after alignment, and (c)
the corresponding ensemble standard deviation (dotted and solid line correspond
to (a) and (b), respectively), (d) spatial variability before (dotted line) and after
loop alignment (εmin in (6); solid line), (e) the scaling estimate α̂ and (f) the angle
estimates ϕ̂X , ϕ̂Y and ϕ̂Z (solid, dotted and dashed/dotted line, respectively).
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Figure 3: An example of fifty superimposed beats at various stages in the simu-
lation model. (a) without added noise, (b) after transformation with Q and (c)
with noise added (σv = 10µV).
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where the duration of inspiration and expiration are determined by λin and λex,
respectively, and the time delays of the sigmoidal functions by κin and κex. The
parameter ηX is an amplitude factor. The angular variation in leads Y and Z are
defined in an analogous manner.

Signals at various stages in the simulation model in (16) are shown in Fig. 3
and the corresponding rotation pattern is shown in Fig. 4 (a). In this example,
rotation is only introduced around the X axis and therefore the morphology of
the beats in Fig. 3 (b) changes only in leads Y and Z. The rotation angles were
estimated from the noisy signal using (15) and are presented in Fig. 4 (b).

A comparison of the original angles and the estimated ones must account for
that the original angles are time-varying while only one angle estimate is obtained
for the entire QRS complex. Therefore, the average of ϕ(k) during the QRS
complex was used as the reference value. The root mean square error measure for
the angle estimates is then given by

δ =

√√√√ 1
B

B∑
i=1

(ϕ̂i − ϕ̄i)2 (18)

where B denotes the number of beats, ϕ̂i and ϕ̄i denote the angle estimate and
the corresponding average reference value, respectively, of the i:th beat. It should
be noted that the error present in δ due to the once-per-beat estimate of the loop
alignment method is negligible for realistic choices of respiratory rates.

Figure 4 (c) presents the error measure δ for each of the X, Y and Z leads
as a function of the noise level σv. An interesting behavior can be observed in
lead Z where a distinct noise level exists (approximately 18 µV) above which the
performance rapidly deteriorates and large estimation error results. Since this
threshold behavior was observed in all other VCG recordings analyzed in this
study (cf. the results in Sec. 4.2), it seems well motivated to use the concept of
breakdown noise level. In the present example, the behavior can also be observed
in the other leads although the decrease in performance is not as drastic as in
lead Z. The original angle pattern and the corresponding estimated pattern in
Fig. 4 (a)–(b) exemplifies the outlier angle estimates which occur at three points
in time.

4.2 Noise and loop morphology

The results in the previous section suggest that it may be of interest to investi-
gate the relation between breakdown noise level and loop morphology. In order
to investigate this aspect a database was used with 34 non-selected individuals
being referred for myocardial scintigraphy [15]. These individuals had no signs of
ischemia or infarction. The ECG signals were recorded during rest for five minutes
using a standard 12 lead configuration. The VCG signals were then synthesized
by means of linear combination of the 12 leads using the inverse Dower weighting
matrix [16].

In order to characterize loop morphology, an over-all measure was considered
which reflects the planarity of a VCG loop. The measure is defined as the ratio
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Figure 4: Example of (a) angular variation pattern and (b) the corresponding
estimates obtained from a signal disturbed by noise with variance σ2

v = 10µV.
The angle patterns are plotted with a five degree displacement for each lead in
order to improve legibility. (c) The angle estimation error δ as a function of noise
variance.
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between the minimum and the maximum singular values of the loop matrix Y, i.e.

ρ =
σmin
σmax

(19)

The limiting values of ρ are 0 (a loop which is perfectly planar) and 1 (a loop
which extends equally into all three dimensions).

The breakdown noise level, denoted σ̃v, is defined as that noise level σv which
causes angle estimation errors in any lead to exceed a certain threshold χ. The
choice of χ was based on the observation that the estimation error is small below
a certain noise level while then rapidly increasing to a considerably larger error
value. By setting χ equal to π/10, proper identification of the noise level at which
angle estimates became anomalous was achieved.

Figure 5 shows that the accuracy of loop alignment with regard to noise level
is strongly dependent on loop planarity; the breakdown noise level σ̃v actually
ranges from 5 to 70 µV. This result suggests that an essentially linear relationship
exists between ρ and σ̃v. It can be concluded that aligning planar loops is much
more vulnerable to noise than is the alignment of a loop extending into all three
dimensions.

It is well-known that normal individuals in general have VCG loops which
are more planar than those from patients with e.g. myocardial infarction. For
example, myocardial damage is often associated with loops which include abnormal
transitions (“bites”) or sharp edges and therefore decreases planarity [17]. Such
differences in loop characteristics may thus imply that alignment, in general, is
more robust in infarct patients than in normal individuals.

5 Spatiotemporal alignment and QRST cancella-

tion

The characterization of atrial fibrillation (AF) using the surface ECG is facilitated
by the derivation of a signal in which the ventricular activity has been first can-
celed. Since the atrial and the ventricular activities overlap spectrally, techniques
based on linear filtering are less suitable. Instead, an average beat subtraction
(ABS) method has been suggested which makes use of the fact that AF is uncou-
pled to ventricular activity. Subtraction of the average beat, which thus reflects the
ventricular activity, produces a residual ECG containing essentially the fibrillation
waveforms, i.e. the f waves [18], [19], [20].

The performance of the ABS method relies on the assumption that the average
beat can represent each individual beat accurately. However, as pointed out earlier
in this chapter, the QRS complexes are often subject to beat-to-beat changes in
morphology which, due to the single lead nature of the ABS method, can cause
large QRS-related residuals. The present loop alignment technique is further de-
veloped below in order to improve the cancellation of QRST complexes [5].
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Figure 5: The relationship between loop planarity and breakdown noise level.

5.1 Signal model with lead-dependent amplitude scaling

The QRST cancellation problem is based on a model similar to that in (2) but
with the amplitude scaling factor α being replaced by a diagonal matrix D which
accounts for scaling in individual leads, i.e.

Y = JτYRDQ + F (20)

The average beat (“the reference beat”) is denoted with YR and the fibrillation
activity with F.

Again, the objective is to find those model parameter values which provide the
best fit of the model to the observed signal. An estimate of the fibrillation signal
F could be obtained by subtracting a scaled, rotated and time shifted version of
YR from Y,

F = Y − Jτ̂YRD̂Q̂ (21)

The Frobenius norm to be minimized is, in an expanded format, equal to

ε2 = tr(YYT ) + tr(JτYRDDTYT
RJTτ )− 2tr(DTYT

RJTτ YQT ) (22)

Unfortunately, the minimization with respect to rotation and amplitude scaling
can no longer be performed independently as was the case in Sec. 2.2. Since the
exact solution is difficult to find, an alternating iterative approach is used in which
the error in (22) for a fixed D is minimized with respect to Q by maximizing the
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last term. In order to find Q̂, the SVD is again employed but now operating on a
different matrix,

Z = DTYT
RJTτ Z = UΣVT (23)

As in Sec. 2.2, the estimate of Q is given by the product of the matrices U and
VT containing the left and right singular vectors, respectively, cf. the expression
in (12).

When an estimate of Q is available, (22) can be written as

ε2 = tr(YQ−1 − JτYRD)QQT (YQ−1 − JτYRD)T (24)

where the introduction of Y2 = YQ−1 yields

ε2 = ‖Y2 − JτYRD‖2F (25)

Equation (25) can now be rearranged as

ε2 = tr(Y2YT
2 ) + tr(DDTYT

RJTτ JτYR)− 2tr(DTYT
RJTτ Y2) (26)

which is minimized by setting the derivative with regard to D to zero, i.e.

dε2

dD
= 2DYT

RJTτ JτYR − 2YT
RJTτ Y2 = 0 (27)

The constraint of D as a diagonal matrix implies that (27) should be evaluated
for individual leads. The diagonal entries in D can therefore be estimated by

d̂l = ([JτYR]Tl [JτYR]l)−1([JτYR]Tl [Y2]l) (28)

For a given Q, the above expression estimates the scale factors of the average beat
before rotation. Based on the new scaling factors an improved rotation matrix can
then be estimated.

Typically, a solution is desired which implies small rotation/scaling, i.e. Q and
D are close to I. The alternating, iterative procedure for finding the parameter
estimates is therefore initialized by D0 = I. The rotation at step k, Qk, is then
calculated based on Dk−1. Since

‖Y − JτYRDk−1Qk‖2F ≤ ‖Y − JτYRDk−1Qk−1‖2F (29)

the error will be less or equal to that in the previous step. When Qk is known,
Dk can be calculated. Accordingly,

‖Y − JτYRDkQk‖2F ≤ ‖Y − JτYRDk−1Qk‖2F (30)

This procedure is then repeated until convergence is achieved. The algorithm
will converge since the minimization with regard to both Q and D for each step
according to (29) and (30) will improve the fit in terms of ε2 [21].

One difficulty in performing the above alignment is that the presence of AF
influences the signal amplitude during the QRS interval. It is therefore desirable
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Figure 6: Example of an ECG with atrial fibrillation

to remove the fibrillatory waveforms before the estimation of Q, D and τ is done.
This approach is obviously a contradiction: to get an estimate of F it must already
be known. Our solution to this dilemma is to use a “quick-and-dirty” method to
produce an AF estimate to be subtracted from Y prior to QRST cancellation. A
method is used which “fills in” the AF waveforms in the QRS interval by inter-
polation based on the AF activity contained in the adjacent T-Q intervals; for
further details see [5].

5.2 Example on QRST cancellation

The performance of the spatiotemporal QRST cancellation method (“QD align-
ment”) is illustrated with an ECG recording from leads V1 - V3, see Fig. 6. The
residual ECGs were computed using the ABS and the QD alignment method, see
Fig. 7. It is obvious from Fig. 7 that the QRS-related residuals are much better
canceled with the QD alignment technique. In this case the improvement is most
striking in the leads with weaker AF, i.e. V2 and V3. In Fig. 7 (a), the periodically
alternating polarity of the QRS-related residuals in lead V2 of the ABS method
suggests that these errors are caused by respiratory-induced variations in QRS
complex morphology; these changes are efficiently handled by the QD method,
cf. Fig. 7 (b).
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Figure 7: QRST cancellation of the ECG signal shown in Fig. 6 using (a) average
beat subtraction and (b) spatiotemporal alignment.
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6 Conclusions

The problem of VCG loop alignment has been revisited by means of developing
a statistical signal model to which ML estimation was applied. The resulting
nonlinear estimation method is feasible from an implementational point of view
while it still ensures that the optimal alignment parameter values (scaling, rotation
and synchronization) are always found.

The loop alignment was applied to the analysis of subtle beat-to-beat variability
in QRS morphology where the cancellation of respiratory-induced variations is
important for accurate morphologic measurements. Two examples illustrated that
the effects of respiration on morphologic variability can be dramatically reduced by
the new technique. Another application is found in the analysis of atrial fibrillation
in the surface ECG where QRST cancellation is required. The residual ECG
produced by the present alignment method is better suited for e.g. time–frequency
AF analysis than that of the ABS method because of the smaller QRS related
residuals.
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